Solar eclipse of January 3, 1946

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, January 3, 1946,[1] with a magnitude of 0.5529. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of January 3, 1946
Map
Type of eclipse
NaturePartial
Gamma−1.2392
Magnitude0.5529
Maximum eclipse
Coordinates67°06′S 177°36′E / 67.1°S 177.6°E / -67.1; 177.6
Times (UTC)
Greatest eclipse12:16:11
References
Saros150 (13 of 71)
Catalog # (SE5000)9388

This was the first of four partial solar eclipses in 1946, with the others occurring on May 30, June 29, and November 23.

A partial eclipse was visible for parts of Antarctica and extreme southern South America.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

January 3, 1946 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1946 January 03 at 10:25:50.6 UTC
Greatest Eclipse 1946 January 03 at 12:16:10.7 UTC
Equatorial Conjunction 1946 January 03 at 12:16:37.9 UTC
Ecliptic Conjunction 1946 January 03 at 12:30:05.5 UTC
Last Penumbral External Contact 1946 January 03 at 14:06:25.7 UTC
January 3, 1946 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.55294
Eclipse Obscuration 0.43993
Gamma −1.23918
Sun Right Ascension 18h54m29.6s
Sun Declination -22°51'18.5"
Sun Semi-Diameter 16'15.9"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 18h54m28.6s
Moon Declination -23°59'55.4"
Moon Semi-Diameter 15'07.7"
Moon Equatorial Horizontal Parallax 0°55'31.2"
ΔT 27.3 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1945–January 1946
December 19
Ascending node (full moon)
January 3
Descending node (new moon)
   
Total lunar eclipse
Lunar Saros 124
Partial solar eclipse
Solar Saros 150
edit

Eclipses in 1946

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 150

edit

Inex

edit

Triad

edit

Solar eclipses of 1942–1946

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on March 16, 1942 and September 10, 1942 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 30, 1946 and November 23, 1946 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1942 to 1946
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
115 August 12, 1942
 
Partial
−1.5244 120 February 4, 1943
 
Total
0.8734
125 August 1, 1943
 
Annular
−0.8041 130 January 25, 1944
 
Total
0.2025
135 July 20, 1944
 
Annular
−0.0314 140 January 14, 1945
 
Annular
−0.4937
145 July 9, 1945
 
Total
0.7356 150 January 3, 1946
 
Partial
−1.2392
155 June 29, 1946
 
Partial
1.4361

Saros 150

edit

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 5–27 occur between 1801 and 2200:
5 6 7
 
October 7, 1801
 
October 19, 1819
 
October 29, 1837
8 9 10
 
November 9, 1855
 
November 20, 1873
 
December 1, 1891
11 12 13
 
December 12, 1909
 
December 24, 1927
 
January 3, 1946
14 15 16
 
January 14, 1964
 
January 25, 1982
 
February 5, 2000
17 18 19
 
February 15, 2018
 
February 27, 2036
 
March 9, 2054
20 21 22
 
March 19, 2072
 
March 31, 2090
 
April 11, 2108
23 24 25
 
April 22, 2126
 
May 3, 2144
 
May 14, 2162
26 27
 
May 24, 2180
 
June 4, 2198

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17 January 1–3 October 20–22 August 9–10 May 27–29
108 110 112 114 116
 
March 16, 1866
 
August 9, 1877
 
May 27, 1881
118 120 122 124 126
 
March 16, 1885
 
January 1, 1889
 
October 20, 1892
 
August 9, 1896
 
May 28, 1900
128 130 132 134 136
 
March 17, 1904
 
January 3, 1908
 
October 22, 1911
 
August 10, 1915
 
May 29, 1919
138 140 142 144 146
 
March 17, 1923
 
January 3, 1927
 
October 21, 1930
 
August 10, 1934
 
May 29, 1938
148 150 152 154
 
March 16, 1942
 
January 3, 1946
 
October 21, 1949
 
August 9, 1953

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.

Series members between 1801 and 2011
 
February 11, 1804
(Saros 137)
 
January 10, 1815
(Saros 138)
 
December 9, 1825
(Saros 139)
 
November 9, 1836
(Saros 140)
 
October 9, 1847
(Saros 141)
 
September 7, 1858
(Saros 142)
 
August 7, 1869
(Saros 143)
 
July 7, 1880
(Saros 144)
 
June 6, 1891
(Saros 145)
 
May 7, 1902
(Saros 146)
 
April 6, 1913
(Saros 147)
 
March 5, 1924
(Saros 148)
 
February 3, 1935
(Saros 149)
 
January 3, 1946
(Saros 150)
 
December 2, 1956
(Saros 151)
 
November 2, 1967
(Saros 152)
 
October 2, 1978
(Saros 153)
 
August 31, 1989
(Saros 154)
 
July 31, 2000
(Saros 155)
 
July 1, 2011
(Saros 156)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 13, 1801
(Saros 145)
 
March 24, 1830
(Saros 146)
 
March 4, 1859
(Saros 147)
 
February 11, 1888
(Saros 148)
 
January 23, 1917
(Saros 149)
 
January 3, 1946
(Saros 150)
 
December 13, 1974
(Saros 151)
 
November 23, 2003
(Saros 152)
 
November 3, 2032
(Saros 153)
 
October 13, 2061
(Saros 154)
 
September 23, 2090
(Saros 155)
 
September 5, 2119
(Saros 156)
 
August 14, 2148
(Saros 157)
 
July 25, 2177
(Saros 158)

References

edit
  1. ^ "January 3, 1946 Partial Solar Eclipse". timeanddate. Retrieved 4 August 2024.
  2. ^ "Partial Solar Eclipse of 1946 Jan 03". EclipseWise.com. Retrieved 4 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.
edit