Hubble's law: Difference between revisions

Content deleted Content added
→‎Hubble tension: Typo fix: this -> thus
→‎21st century measurements: Described Freedman's very interesting results suggesting some problem with Cepheids; silenced a couple of Category:CS1 maint: numeric names: authors list errors due to digits in collaboration names (SPT-3G, 1M2H, DLT40)
Tag: Reverted
Line 332:
 
In July 2023, an independent estimate of the Hubble constant was derived from the optical counterpart of a neutron-star merger, a so-called [[kilonova]].<ref name="aanda.org">{{Cite journal |last1=Sneppen |first1=Albert |last2=Watson |first2=Darach |last3=Poznanski |first3=Dovi |last4=Just |first4=Oliver |last5=Bauswein |first5=Andreas |last6=Wojtak |first6=Radosław |date=2023-10-01 |title=Measuring the Hubble constant with kilonovae using the expanding photosphere method |url=https://www.aanda.org/articles/aa/abs/2023/10/aa46306-23/aa46306-23.html |journal=Astronomy & Astrophysics |language=en |volume=678 |pages=A14 |doi=10.1051/0004-6361/202346306 |issn=0004-6361|arxiv=2306.12468 |bibcode=2023A&A...678A..14S }}</ref> Due to the blackbody nature of early kilonova spectra,<ref>{{Cite journal |last=Sneppen |first=Albert |date=2023-09-01 |title=On the Blackbody Spectrum of Kilonovae |journal=The Astrophysical Journal |volume=955 |issue=1 |pages=44 |doi=10.3847/1538-4357/acf200 |doi-access=free |issn=0004-637X|arxiv=2306.05452 |bibcode=2023ApJ...955...44S }}</ref> such systems provide strongly constraining estimators of cosmic distance. Using the kilonova AT2017gfo, these measurements indicate a local-estimate of the Hubble constant of {{val|67.0|+3.6|u=km/s|up=Mpc}}.<ref name="nature.com">{{Cite journal |last1=Sneppen |first1=Albert |last2=Watson |first2=Darach |last3=Bauswein |first3=Andreas |last4=Just |first4=Oliver |last5=Kotak |first5=Rubina |last6=Nakar |first6=Ehud |last7=Poznanski |first7=Dovi |last8=Sim |first8=Stuart |date=February 2023 |title=Spherical symmetry in the kilonova AT2017gfo/GW170817 |url=https://www.nature.com/articles/s41586-022-05616-x |journal=Nature |language=en |volume=614 |issue=7948 |pages=436–439 |doi=10.1038/s41586-022-05616-x |pmid=36792736 |arxiv=2302.06621 |bibcode=2023Natur.614..436S |s2cid=256846834 |issn=1476-4687}}</ref><ref name="aanda.org"/>
 
[[File:Hubbleconstants color.png|centre|upright=3.8|thumb|Estimated values of the Hubble constant, 2001–2020. Estimates in black represent calibrated distance ladder measurements which tend to cluster around {{val|73||u=km/s|up=Mpc}}; red represents early universe CMB/BAO measurements with ΛCDM parameters which show good agreement on a figure near {{val|67|u=km/s|up=Mpc}}, while blue are other techniques, whose uncertainties are not yet small enough to decide between the two.]]
Line 353 ⟶ 372:
|{{val|68.3|1.5}}
|[[South Pole Telescope#The SPT-3G camera|SPT-3G]]
|<ref>{{Cite journal |last1=SPT-3G Collaboration |last2=Balkenhol |first2=L. |last3=Dutcher |first3=D. |last4=Spurio Mancini |first4=A. |last5=Doussot |first5=A. |last6=Benabed |first6=K. |last7=Galli |first7=S. |last8=Ade |first8=P. A. R. |last9=Anderson |first9=A. J. |last10=Ansarinejad |first10=B. |last11=Archipley |first11=M. |last12=Bender |first12=A. N. |last13=Benson |first13=B. A. |last14=Bianchini |first14=F. |last15=Bleem |first15=L. E. |date=2023-07-13 |title=Measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 $TT$, $TE$, and $EE$ dataset |url=https://link.aps.org/doi/10.1103/PhysRevD.108.023510 |journal=Physical Review D |volume=108 |issue=2 |pages=023510 |arxiv=2212.05642v3 |doi=10.1103/PhysRevD.108.023510|s2cid=259887685 }}</ref>
|CMB TT/TE/EE power spectrum. Less than 1''σ'' discrepancy with Planck.
|-
Line 389 ⟶ 408:
|{{val|69.8|1.7}}
|[[Wendy Freedman|W. Freedman]]
|<ref>{{Cite journal|last=Freedman|first=Wendy L.|date=2021-09-01|title=Measurements of the Hubble Constant: Tensions in Perspective*|journal=The Astrophysical Journal|volume=919|issue=1|pages=16|doi=10.3847/1538-4357/ac0e95| arxiv=2106.15656|bibcode=2021ApJ...919...16F|s2cid=235683396|issn=0004-637X |doi-access=free }}</ref>
|[[Tip of the red-giant branch]] (TRGB) distance indicator (HST+Gaia EDR3)
|-
Line 534 ⟶ 553:
|{{val|70.0|+12.0|-8.0}}
|The [[LIGO Scientific Collaboration]] and The [[Virgo interferometer|Virgo]] Collaboration
|<ref>{{Cite journal|display-authors=4|last1=The LIGO Scientific Collaboration and The Virgo Collaboration|last2=The 1M2H Collaboration|last3=The Dark Energy Camera GW-EM Collaboration and the DES Collaboration|last4=The DLT40 Collaboration|last5=The Las Cumbres Observatory Collaboration|last6=The VINROUGE Collaboration|last7=The MASTER Collaboration|date=2017-10-16|title=A gravitational-wave standard siren measurement of the Hubble constant|url=http://www.physics.ufl.edu/~tanner/PDFS/Abbott17Nat-HubbleSiren.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.physics.ufl.edu/~tanner/PDFS/Abbott17Nat-HubbleSiren.pdf |archive-date=2022-10-09 |url-status=live|journal=Nature|language=en|volume=551|issue=7678|pages=85–88|doi=10.1038/nature24471|pmid=29094696|issn=1476-4687|arxiv=1710.05835|bibcode=2017Natur.551...85A|s2cid=205261622}}</ref>
| [[Cosmic distance ladder#Standard siren|Standard siren]] measurement independent of normal "standard candle" techniques; the gravitational wave analysis of a binary [[neutron star]] (BNS) merger [[GW170817]] directly estimated the luminosity distance out to cosmological scales. An estimate of fifty similar detections in the next decade may arbitrate tension of other methodologies.<ref>{{cite journal |display-authors=4 |arxiv=1802.03404 |title=Prospects for resolving the Hubble constant tension with standard sirens |journal=Physical Review Letters |volume=122 |issue=6 |pages=061105 |last1=Feeney |first1=Stephen M |last2=Peiris |first2=Hiranya V |last3=Williamson |first3=Andrew R |last4=Nissanke |first4=Samaya M |last5=Mortlock |first5=Daniel J |last6=Alsing |first6=Justin |last7=Scolnic |first7=Dan |year=2019 |bibcode=2019PhRvL.122f1105F |doi=10.1103/PhysRevLett.122.061105 |pmid=30822066 |url=https://repository.ubn.ru.nl/handle/2066/201510|hdl=2066/201510 |s2cid=73493934 }}</ref> Detection and analysis of a neutron star-black hole merger (NSBH) may provide greater precision than BNS could allow.<ref name="VitaleChen2018">{{cite journal |last1=Vitale |first1=Salvatore |last2=Chen |first2=Hsin-Yu |title=Measuring the Hubble Constant with Neutron Star Black Hole Mergers |journal=Physical Review Letters |date=12 July 2018 |volume=121 |issue=2 |pages=021303 |doi=10.1103/PhysRevLett.121.021303 |pmid=30085719 |arxiv=1804.07337 |bibcode=2018PhRvL.121b1303V |hdl=1721.1/117110 |s2cid=51940146 }}</ref>
|-
Line 633 ⟶ 652:
| {{val|72|8}}
| [[Hubble Space Telescope#Key projects|Hubble Space Telescope Key Project]]
| <ref name="Freedman2001">{{cite journal |last=Freedman |first=W. L. |display-authors=etal |year=2001 |title=Final results from the Hubble Space Telescope Key Project to measure the Hubble constant |journal=[[The Astrophysical Journal]] |volume=553 |issue=1 |pages=47–72 |arxiv=astro-ph/0012376 |bibcode=2001ApJ...553...47F |doi=10.1086/320638 |s2cid=119097691 }}</ref>
| This project established the most precise optical determination, consistent with a measurement of {{math|''H''{{sub|0}}}} based upon Sunyaev–Zel'dovich effect observations of many galaxy clusters having a similar accuracy.
|-