Skip to main content
Log in

Iodine status in preschool children and evaluation of major dietary iodine sources: a German experience

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Even mild iodine deficiency may negatively affect cognitive performance, especially at a young age. Our aim was to investigate iodine status in very young children and to assess the importance of iodized salt in processed foods of which the use has decreased during the last years in Germany.

Methods

Twenty-four hours urinary iodine excretion (UIE) as a marker of iodine intake was measured in 378 24 h urine samples collected 2003–2010 by 221 3 to <6 years old participants of the DONALD Study. Parallel 3-d weighed dietary records and measurements of urinary sodium excretion provided data on the daily consumption of the most important iodine sources in the children’s diet (iodized salt, milk, fish, meat and eggs). Time trends of UIE (2003–2010) and contributions of the different food groups were analyzed by using linear mixed-effects regression models.

Results

Median UIE of 71 μg/d in boys and 65 μg/d in girls (P = 0.03), corresponding to an iodine intake of 82 and 75 μg/d, respectively (assumption: 15 % non-renal iodine losses), was below the recommended dietary allowance (RDA) of 90 μg/d. Milk, salt and egg intake were significant predictors of UIE; milk and salt together accounted for >80 % of iodine supply. Between 2003 and 2010, UIE decreased significantly by approximately 1 μg/d per year. The contribution of salt intake to UIE decreased from 2003–2006 to 2007–2010.

Conclusion

In countries where salt is a major iodine source, already modest decreases in the iodized proportion of salt used in processed foods may relevantly impair iodine status even in preschool children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Charlton K, Skeaff S (2011) Iodine fortification: why, when, what, how, and who? Curr Opin Clin Nutr Metab Care 14:618–624

    Article  CAS  Google Scholar 

  2. World Health Organisation (2007) Assessment of iodine deficiency disorders and monitoring their elimination. World Health Organisation, Geneva

    Google Scholar 

  3. Andersson M, Karumbunathan V, Zimmermann MB (2012) Global iodine status in 2011 and trends over the past decade. J Nutr 142:744–750

    Google Scholar 

  4. Vanderpump MP, Lazarus JH, Smyth PP, Laurberg P, Holder RL, Boelaert K et al (2011) Iodine status of UK schoolgirls: a cross-sectional survey. Lancet 377:2007–2012

    Article  CAS  Google Scholar 

  5. Li M, Eastman CJ, Waite KV, Ma G, Zacharin MR, Topliss DJ et al (2006) Are Australian children iodine deficient? Results of the Australian national iodine nutrition study. Med J Aust 184:165–169

    Google Scholar 

  6. Zimmermann MB (2011) Iodine deficiency in industrialized countries. Clin Endocrinol (Oxf) 75:287–288

    Article  CAS  Google Scholar 

  7. van der Haar F, Gerasimov G, Haxton DP, Zimmermann MB (2011) Iodine deficiency in UK schoolgirls. Lancet 378:1623 author reply 1624

    Article  Google Scholar 

  8. de Benoist B, McLean E, Andersson M, Rogers L (2008) Iodine deficiency in 2007: global progress since 2003. Food Nutr Bull 29:195–202

    Google Scholar 

  9. Gordon RC, Rose MC, Skeaff SA, Gray AR, Morgan KM, Ruffman T (2009) Iodine supplementation improves cognition in mildly iodine-deficient children. Am J Clin Nutr 90:1264–1271

    Article  CAS  Google Scholar 

  10. Santiago-Fernandez P, Torres-Barahona R, Muela-Martinez JA, Rojo-Martinez G, Garcia-Fuentes E, Garriga MJ et al (2004) Intelligence quotient and iodine intake: a cross-sectional study in children. J Clin Endocrinol Metab 89:3851–3857

    Article  CAS  Google Scholar 

  11. Zimmermann MB, Connolly K, Bozo M, Bridson J, Rohner F, Grimci L (2006) Iodine supplementation improves cognition in iodine-deficient schoolchildren in Albania: a randomized, controlled, double-blind study. Am J Clin Nutr 83:108–114

    CAS  Google Scholar 

  12. Shrestha RM (1994) Effect of iodine and iron supplementation on physical, psychomotor and mental development in primary school children in Malawi. Agricultural University, Wageningen, Wageningen

    Google Scholar 

  13. Melse-Boonstra A, Jaiswal N (2011) Iodine deficiency in pregnancy, infancy and childhood and its consequences for brain development. Best Pract Res Clin Endocrinol Metab 24:29–38

    Article  Google Scholar 

  14. Andersson M, de Benoist B, Darnton-Hill I, Delange F (eds) (2007) Iodine deficiency in Europe: a continuing public health problem. WHO Press, Geneva

    Google Scholar 

  15. Gärtner R (2009) Jodversorgung in Deutschland—Was ist noch zu tun? http://www.jodmangel.de/newsletter/newsletter_2009.pdf Accessed 13.09.2012

  16. Johner SA, Gunther AL, Remer T (2011) Current trends of 24-h urinary iodine excretion in German schoolchildren and the importance of iodised salt in processed foods. Br J Nutr 106:1749–1756

    Article  CAS  Google Scholar 

  17. Buyken AE, Alexy U, Kersting M, Remer T (2012) The DONALD cohort: an updated overview on 25 years of research based on the DOrtmund nutritional and anthropometric longitudinally designed study. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55:875–884

    Article  CAS  Google Scholar 

  18. Remer T, Neubert A, Maser-Gluth C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 75:561–569

    CAS  Google Scholar 

  19. Lorenz-Wawschinek O, Tiran B, Eber O, Langsteger W (1994) Photometric determination of iodine in urine. Exp Clin Endocrinol 102:357–358

    Google Scholar 

  20. Sichert-Hellert W, Kersting M, Chahda C, Schaefer R, Kroke A (2007) German food composition database for dietary evaluations in children and adolescents. J Food Comp Anal 20:63–70

    Article  Google Scholar 

  21. Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39(Suppl 1):5–41

    Google Scholar 

  22. Sichert-Hellert W, Kersting M, Schoch G (1998) Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37:242–251

    Article  CAS  Google Scholar 

  23. Lohman T, Roche A, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics, Champaign

    Google Scholar 

  24. Du Bois D, Du Bois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Int Med 17:863–871

    Article  Google Scholar 

  25. Neuhauser H, Schienkiewitz A, Schaffrath Rosario A, Dortschy R, Kurth B (2011) Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS) 2003–2006. Robert Koch Institut, Berlin

    Google Scholar 

  26. Anke M, Groppel B, Scholz E, Bauch K (1992) Jodaufnahme, Jodausscheidung und Jodbilanz Erwachsener der neuen Bundesländer Deutschlands. In: Anke M, Groppel B, Gürtler H, Grün M, Lombeck I, Schneider H (eds) Mengen- und Spurenelemente, vol 12. Universität Jena, Arbeitstagung, pp 450–461 a

    Google Scholar 

  27. Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF (1992) Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res 62:66–72

    CAS  Google Scholar 

  28. Johner SA, Shi L, Remer T (2010) Higher urine volume results in additional renal iodine loss. Thyroid 20:1391–1397

    Article  CAS  Google Scholar 

  29. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113:192–200

    Article  CAS  Google Scholar 

  30. Verbeke G, Molenberghs G (2000) PORC MIXED versus PROC GLM. In: Verbeke G, Molenberghs G (eds) Linear mixed models for longitudinal data. Springer, New York, pp 119–120

    Google Scholar 

  31. Food and Nutrition Board, Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington

    Google Scholar 

  32. Arbeitskreis Jodmangel (2008) Entwicklung der Marktanteile von jodiertem Speise-und Pökelsalz am gesamten Speisesalzabsatz in Großgebinden in Deutschland. http://jodmangel.de/presseinfos/bilder/grossgebinde07.jpg Accessed 13.09.2012

  33. Bohac L (2011) The food industry can play an important role in correcting iodine deficiency. IDD Newsletter. p 12–15

  34. Johner SA, von Nida K, Jahreis G, Remer T (2012) Aktuelle Untersuchungen zeitlicher Trends und saisonaler Effekte des Jodgehalts in Kuhmilch—Untersuchungen aus Nordrhein Westfalen. Berliner und Münchener Tierärztliche Wochenschrift 125:10–16

    Google Scholar 

  35. Food and Nutrition Board, Institute of Medicine (2000) Dietary reference intakes: applications in dietary assessment. National Academic Press, Washington

    Google Scholar 

  36. Remer T, Fonteyn N, Alexy U, Berkemeyer S (2006) Longitudinal examination of 24-h urinary iodine excretion in schoolchildren as a sensitive, hydration status-independent research tool for studying iodine status. Am J Clin Nutr 83:639–646

    CAS  Google Scholar 

  37. Dary O (2011) Time to refine the use of urinary iodine to assess iodine intakes in populations. Br J Nutr 106:1630–1631

    Article  CAS  Google Scholar 

  38. Wudy SA, Hartmann MF, Remer T (2007) Sexual dimorphism in cortisol secretion starts after age 10 in healthy children: urinary cortisol metabolite excretion rates during growth. Am J Physiol Endocrinol Metab 293:E970–E976

    Article  CAS  Google Scholar 

  39. Deutsche Gesellschaft für Ernährung (Hrsg.) (2008) Referenzwerte für die Nährstoffzufuhr. Umschau Verlag, Frankfurt a. M

  40. Thamm M, Ellert U, Thierfelder W, Liesenkotter KP, Volzke H (2007) Iodine intake in Germany. Results of iodine monitoring in the German Health Interview and Examination survey for children and adolescents (KiGGS) (article in German). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50:744–749

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) through the Federal Agency of Agriculture and Food (BLE), grant number 2809HS014. The DONALD Study is funded by the Ministry of Science and Research of North Rhine Westphalia, Germany. The participation of all children and their families in the DONALD Study is gratefully acknowledged. We also thank the staff of the Research Institute of Child Nutrition for carrying out the anthropometric measurements and for collecting and coding the dietary records. In particular, the authors thank Monika Friedrich and Brigitte Nestler for expert laboratory assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone A. Johner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johner, S.A., Thamm, M., Nöthlings, U. et al. Iodine status in preschool children and evaluation of major dietary iodine sources: a German experience. Eur J Nutr 52, 1711–1719 (2013). https://doi.org/10.1007/s00394-012-0474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0474-6

Keywords

Navigation